

Figure by Sooji (Katie) Jo Pictures by Sooji (Katie) Jo, Bethanie Borg, and Suzzy Arika

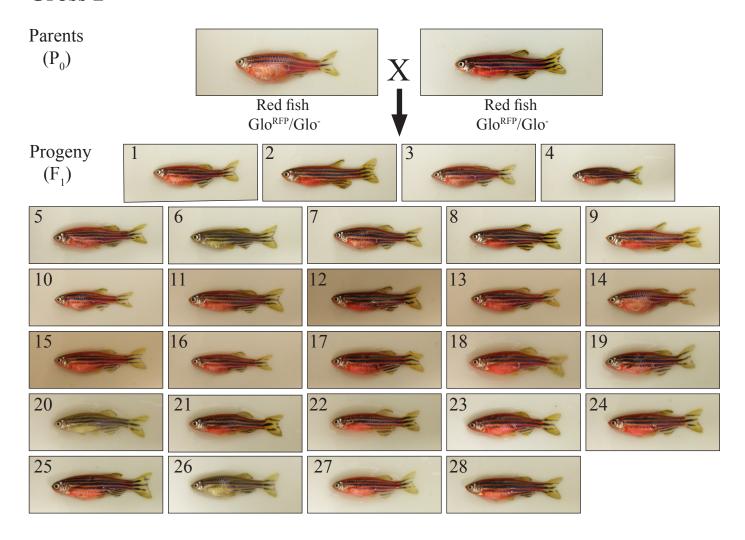


Figure by Sooji (Katie) Jo Pictures by Sooji (Katie) Jo, Bethanie Borg, and Suzzy Arika

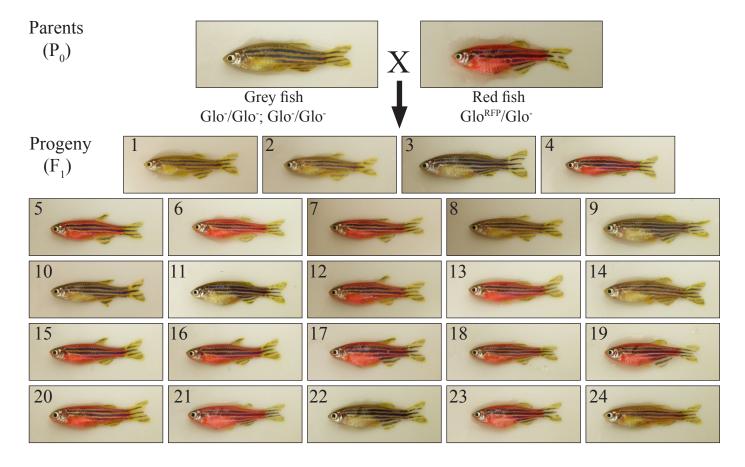


Figure by Sooji (Katie) Jo Pictures by Sooji (Katie) Jo, Bethanie Borg, and Suzzy Arika

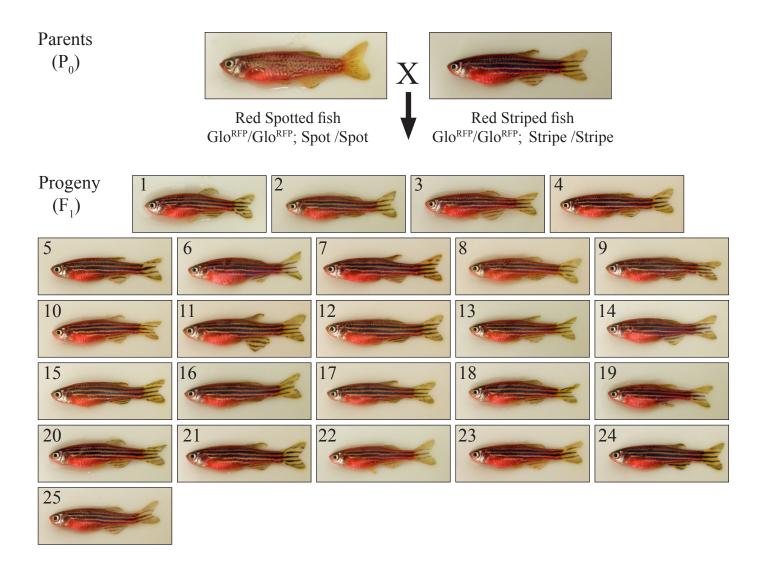


Figure by Sooji (Katie) Jo Pictures by Sooji (Katie) Jo, Bethanie Borg, and Suzzy Arika

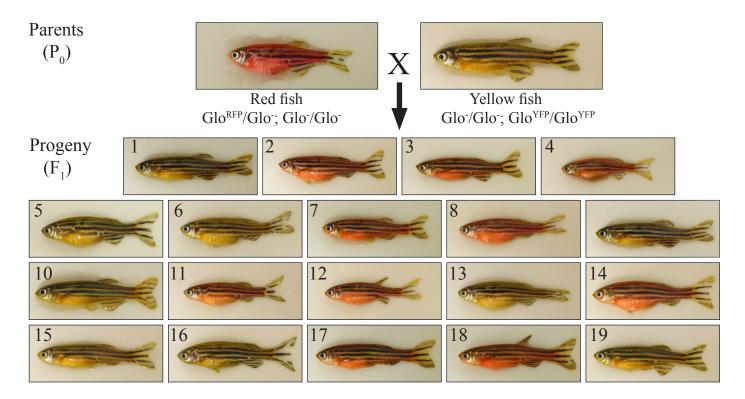


Figure by Sooji (Katie) Jo Pictures by Sooji (Katie) Jo, Bethanie Borg, and Suzzy Arika

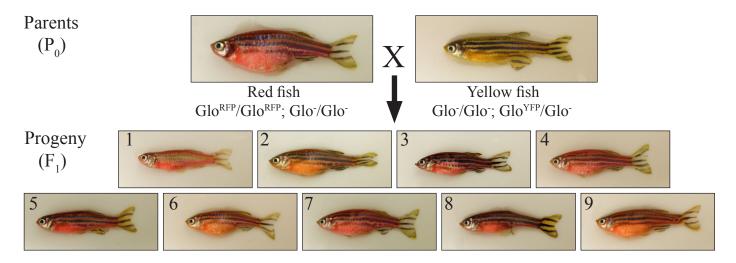


Figure by Sooji (Katie) Jo Pictures by Sooji (Katie) Jo, Bethanie Borg, and Suzzy Arika

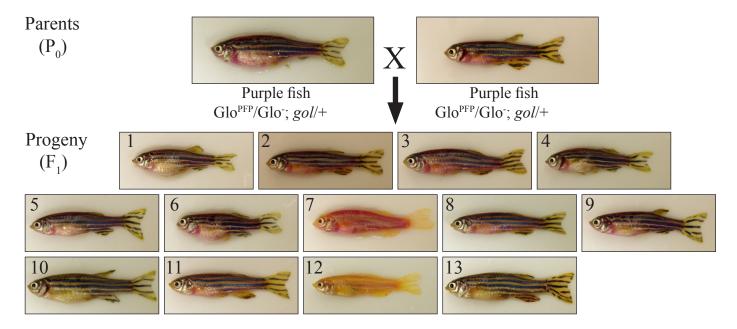


Figure by Sooji (Katie) Jo Pictures by Sooji (Katie) Jo, Bethanie Borg, and Suzzy Arika

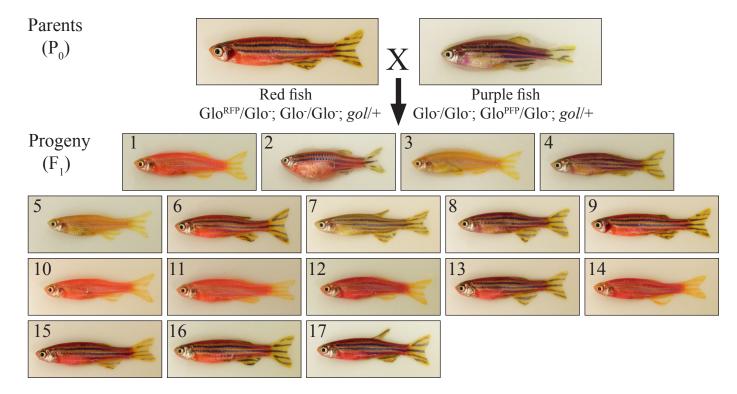


Figure by Sooji (Katie) Jo Pictures by Sooji (Katie) Jo, Bethanie Borg, and Suzzy Arika

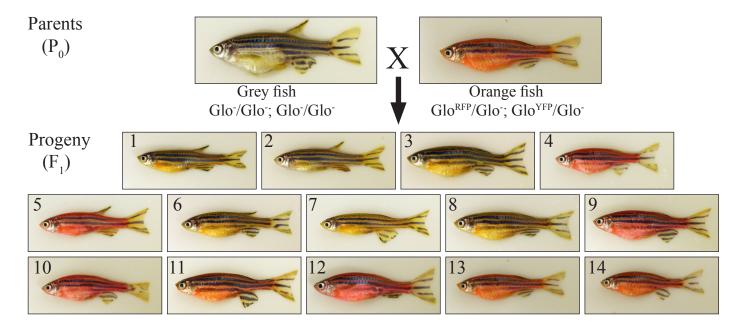


Figure by Sooji (Katie) Jo Pictures by Sooji (Katie) Jo, Bethanie Borg, and Suzzy Arika

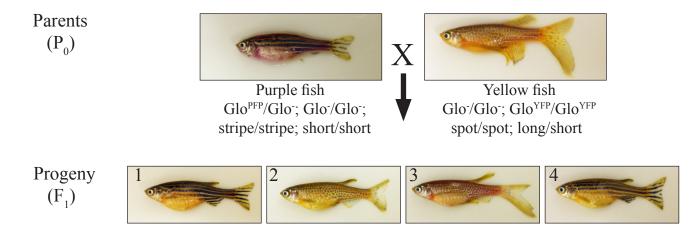


Figure by Sooji (Katie) Jo Pictures by Sooji (Katie) Jo, Bethanie Borg, and Suzzy Arika

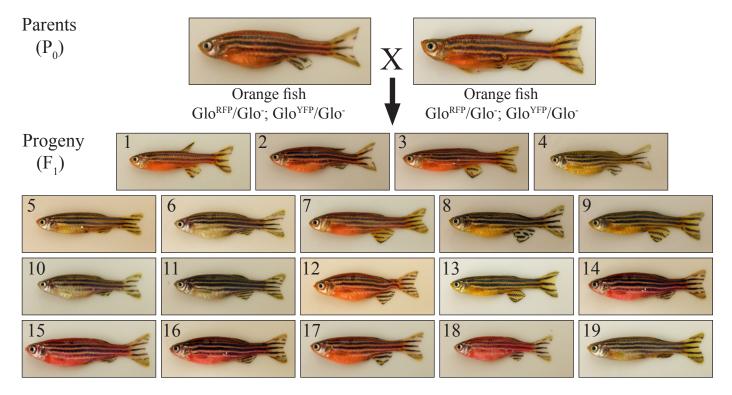


Figure by Sooji (Katie) Jo Pictures by Sooji (Katie) Jo, Bethanie Borg, and Suzzy Arika

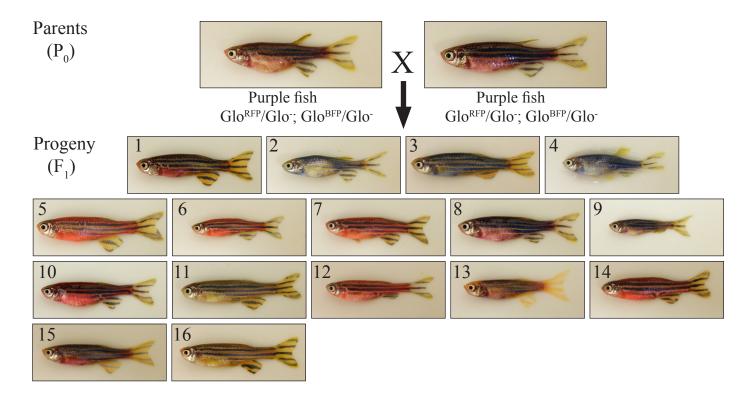


Figure by Sooji (Katie) Jo Pictures by Sooji (Katie) Jo, Bethanie Borg, and Suzzy Arika

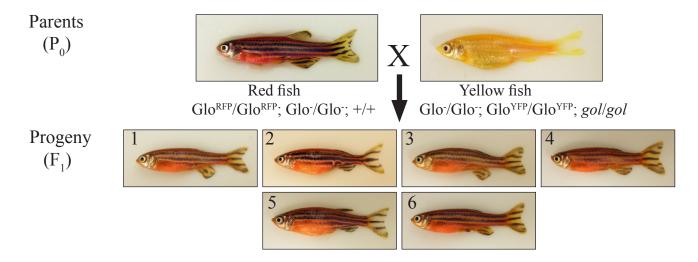


Figure by Sooji (Katie) Jo Pictures by Sooji (Katie) Jo, Bethanie Borg, and Suzzy Arika

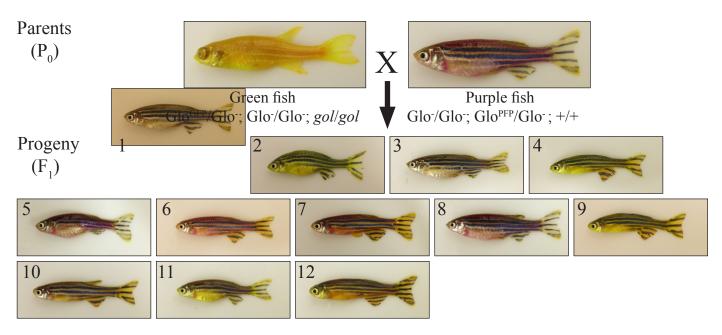


Figure by Sooji (Katie) Jo Pictures by Sooji (Katie) Jo, Bethanie Borg, and Suzzy Arika

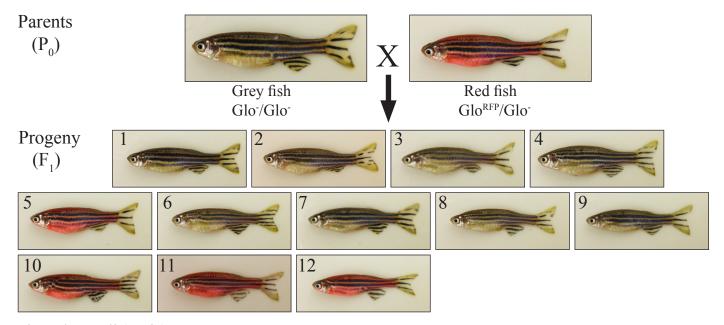


Figure by Sooji (Katie) Jo Pictures by Sooji (Katie) Jo, Bethanie Borg, and Suzzy Arika

Figure Legends and Key Zebrafish Pedigree Data By Sooji (Katie) Jo

Cross 1: Progeny of a dihybrid cross between a purple male and WT female zebrafish. Images of the parents and all of the progeny were auto-toned using Photoshop. Data and chi-square analysis for this cross are found in Table 1. Key: Grey 8, 17; Purple 5, 6, 9, 10, 14; Blue 1, 2, 3, 4; Red 7, 11, 12, 13, 15, 16, 18, 19, 20; Male 1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20; Female 7, 10.

Cross 2: Progeny of a monohybrid cross between red male and female zebrafish. Images of the parents and all of the progeny were auto-toned using Photoshop. Data and chi-square analysis for this cross are found in Table 2. Key: Red 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28; Grey 20, 26; Male 5, 8, 9, 11, 12, 21, 22, 25; Female 1, 2, 3, 4, 6, 7, 10, 13, 14, 15, 16, 17, 18, 19, 20, 23, 24, 26, 27, 28.

Cross 3: Progeny of a monohybrid cross between a red female and WT male zebrafish. Images of the parents and all of the progeny were auto-toned using Photoshop. Data and chi-square analysis for this cross are found in Table 3. Key: Red 4, 5, 6, 7, 12, 13, 15, 16, 17, 18, 19, 20, 21, 23; Grey 1, 2, 3, 8, 9, 10, 11, 14, 22, 24.

Cross 4: Progeny of a dihybrid cross between a non-striped, red female and striped, red male zebrafish. Images of the parents and all of the progeny were auto-toned using Photoshop. Data and chi-square analysis for this cross are found in Table 4. Key: Red and striped 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25; Male 1, 4, 5, 7, 10, 13, 14, 15, 16, 24; Female 2, 3, 6, 8, 9, 11, 12, 17, 18, 19, 20, 21, 22, 23.

Cross 5: Progeny of dihybrid cross between a red female and yellow male zebrafish. Images of the parents and all of the progeny were auto-toned using Photoshop. Data and chi-square analysis for this cross are found in Table 5. Key: Yellow 1, 5, 6, 10, 13, 15, 16, 19, 20; Orange 2, 3, 4, 7, 8, 11, 12, 14, 17, 18; Male 1, 7, 10, 15, 16, 17, 18, 19, 20; Female 2, 3, 4, 5, 6, 8, 11, 12, 13, 14.

Cross 6: Progeny of a monohybrid cross between a homozygous red female and yellow male zebrafish. Images of the parents and all of the progeny were auto-toned using Photoshop. Data and chi-square analysis for this cross are found in Table 6. Key: Red 3, 4, 5, 7, 8; Orange 1, 2, 6, 9; Male 1, 5, 8; Female 2, 3, 4, 6, 7, 9.

Cross 7: Progeny of dihybrid cross between a purple female and purple male zebrafish. Images of the parents and all of the progeny were auto-toned using Photoshop. Data and chi-square analysis for this cross are found in Table 7. Key: Purple 1, 2, 3, 4, 5, 6, 8, 9, 11; Grey 10, 13; Purple; no pigment 7; Grey; no pigment 12; Male 2, 3, 4, 5, 7, 8, 11; Female 1, 6, 9, 10, 12, 13.

Cross 8: Progeny of trihybrid cross between a red male and a purple female zebrafish. Images of the parents and all of the progeny were auto-toned using Photoshop. Data and chi-square analysis for this cross are found in Table 8. Key: Grey, striped 7; Purple, striped 4, 8; Red, striped 1, 2, 6, 9, 16; Red-purple, striped 13, 15, 17; Grey; no pigment 3, 5; Red; no pigment 10, 11; Red-purple; no pigment 12, 14; Male 1, 3, 4, 5, 6, 7, 8, 9, 10, 11 12, 14, 15, 16, 17; Female 2, 13.

Cross 9: Progeny of dihybrid cross between a WT female and orange male zebrafish. Images of the parents and all of the progeny were auto-toned using Photoshop. Data and chi-square analysis for this cross are found in Table 9. Key: Grey 2; Yellow 1, 3, 6, 7, 8; Red 4, 5, 9, 10, 12; Orange 11, 13, 14; Male 7; Female 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14.

Cross 10: Progeny of tetrahybrid cross between a short finned, striped, purple male and long finned, spotted, yellow female zebrafish. Images of the parents and all of the progeny were auto-toned using Photoshop. Data and chi-square analysis for this cross are found in Table 10. Key: Yellow 1, 2, 4; Yellow-purple 3; Short finned 1, 2, 4; Long finned 3; Striped 1, 4; Spotted 2, 3; Female 1, 2, 3, 4.

Cross 11: Progeny of a dihybrid cross between an orange male and orange female zebrafish. Images of the parents and all of the progeny were auto-toned using Photoshop. Data and chi-square analysis for this cross are found in Table 11. Key: Orange 1, 2, 3, 7, 12, 17; Yellow 4, 5, 8, 9, 13; Grey 6, 10, 11, 19; Red 14, 15, 16, 18; Female 2, 4, 6, 8, 10, 11, 12, 14, 15, 16, 17, 18; Male 1, 3, 5, 7, 9, 13, 19.

Cross 12: Progeny of trihybrid cross between a purple male and purple female zebrafish. Images of the parents and all of the progeny were auto-toned using Photoshop. Data and chi-square analysis for this cross are found in Table 12. Key: Grey, striped 16; Blue, striped 2, 3, 4; Red, striped 5, 6, 7, 10, 12, 14; Purple, striped 1, 8, 9, 15; Grey, striped 11; Purple, no pigment 13; Female 2, 4, 8, 9,10,13; Male 1, 5, 6, 7,11,12,14,15,16.

Cross 13: Progeny of dihybrid cross between a homozygous red male and homozygous yellow female zebrafish. Images of the parents and all of the progeny were auto-toned using Photoshop. Data and chi-square analysis for this cross are found in Table 13. Key: Orange 1, 2, 3, 4, 5, 6; Female 2, 5; Male 1, 3, 4, 6.

Cross 14: Progeny of a dihybrid cross between a green, no pigment male and purple, striped female zebrafish. Images of the parents and all of the progeny were auto-toned using Photoshop. Data and chi-square analysis for this cross are found in Table 14. Key: Grey 1, 3, 10; Green 2, 4, 9, 11, 12; Purple 5, 8; Green-purple 6, 7; Female 1, 3, 5, 11; Male 2, 4, 6, 7, 8, 9, 10, 12.

Cross 15 (20): Progeny of a monohybrid cross between a grey female and red male zebrafish. Images of the parents and all of the progeny were auto-toned using Photoshop. Data and chi-square analysis for this cross are found in Table 15. Key: Grey 1, 2, 3, 4, 6, 7, 8, 9; Red 5, 10, 11, 12; Female 2, 3, 4, 5, 7, 10; Male 1, 6, 8, 9, 11, 12.

Chi Square Answer sheet for Crosses 1-15 By Sooji (Katie) Jo and Jennifer Liang

Table 1: Cross 1: Dihybrid between purple (bluered) male and WT female

Step 3 Analysis

	_	-	
RFP	RFP/-	RFP/-	
-	-/-	-/-	

Red 1/2 Non red 1/2

	-	-
BFP	BFP/-	BFP/-
-	-/-	-/-

Blue 1/2 Non blue 1/2

Grey 1/2 *1/2* 20 = 5 Purple 1/2 *1/2* 20 = 5 Blue 1/2 *1/2 *20 = 5 Red 1/2 *1/2* 20 = 5

Chi Square Table for this clutch:

(1)	(2)	(3)	(4)	(5)	(6)
Phenotype	Observed	Expected	d = (o - e)	d^2	d ² /e
	Number, o	Number, e			
Grey	2	5	-3	9	1.8
Purple	5	5	0	0	0
Blue	4	5	-1	1	0.2
Red	9	5	4	16	3.2
Total	20	20			3.2

⁽⁷⁾ X^2 = the sum of all of the numbers in column 6 = 3.2

Conclusion:

(9) P-value and conclusion about your hypothesis: 0.1

⁽⁸⁾ Degrees of freedom (df) = n-1 = 3

Table 2: Cross 2: Monohybrid between red female and red male

Step 3 Analysis

	Red	-
Red	R/R	R/-
_	R/-	-/-

Red 3/4 *27 (Total observed number) = 20.25 = 20Not red 1/4 *27 = 6.75 = 7

Chi Square Table for this clutch:

		iare Table for t		1	1
(1)	(2)	(3)	(4)	(5)	(6)
Phenotype	Observed	Expected	d = (o - e)	d^2	d ² /e
	Number, o	Number, e			
Red	25	20	5	25	1.25
Grey	2	7	-5	25	3.57
Total	27	27			4.82

⁽⁷⁾ X^2 = the sum of all of the numbers in column 6 = 4.82

Conclusion:

(9) P-value and conclusion about your hypothesis:

⁽⁸⁾ Degrees of freedom (df) = n-1=1

Table 3: Cross 3: Monohybrid between red female and WT male

Step 3 analysis

	-	-	
Red	R/-	-/-	
_	R/-	-/-	-

Red: 1/2 *24 = 12 Not red: 1/2*24 = 12

Chi Square Table for this clutch:

(1)	(2)	(3)	(4)	(5) d ²	(6)
Phenotype	Observed	Expected	d = (o - e)	d^2	d^2/e
	Number, o	Number, e			
Red	14	12	2	4	0.33
Grey	10	12	-2	4	0.33
Total	24	24	0		0.66
					1

- (7) X^2 = the sum of all of the numbers in column 6 = 0.66
- (8) Degrees of freedom (df) = n-1 = 1

Conclusion:

(9) P-value and conclusion about your hypothesis: 0.4 < P < 0.5

Table 4: Cross 4: Dihybrid between nonstriped, red female and striped, red male

Step 3 analysis

	RFP	RFP
RFP	R/R	R/R
RFP	R/R	R/R

Red: 1

	Stripe	Stripe
Spot	Sp/St	Sp/St
Spot	Sp/St	Sp/St

Stripe: 1

Red/striped 1*1*25 = 25

Chi Square Table for this clutch:

(1)	-	(2)	l	(5)	(6)
(1)	(2)	(3)	(4)	(5)	(6)
Phenotype	Observed	Expected	d = (o - e)	$\frac{(5)}{d^2}$	d ² /e
	Number, o	Number, e			
Red/Striped	25	25	0	0	0
Total	25	25		0	0

⁽⁷⁾ X^2 = the sum of all of the numbers in column 6 = 0

Conclusion:

(9) P-value and conclusion about your hypothesis: Cannot do Chi-square analysis when df=0

⁽⁸⁾ Degrees of freedom (df) = n-1 = 0

Table 5: Cross 5: Dihybrid between red female and yellow male

Step 3 Analysis

	-	-
RFP	R/-	R/-
-	-/-	-/-

Red: 1/2 Not Red: 1/2

	-	-
YFP	Y/-	Y/-
YFP	Y/-	Y/-

Yellow 1

Orange: 1/2*1 *19 = 9.5 Yellow 1/2 * 1 *19=9.5

Chi Square Table for this clutch:

		are Table for t		1	T
(1)	(2)	(3)	(4)	(5)	(6)
Phenotype	Observed	Expected	d = (o - e)	d^2	d ² /e
	Number, o	Number, e	, ,		
Yellow	9	10	1	1	0.1
Orange	10	10	0	0	0
Total	19	19			0.1

⁽⁷⁾ X^2 = the sum of all of the numbers in column 6 = 0.1

Conclusion:

(9) P-value and conclusion about your hypothesis:

0.7 < P < 0.8

⁽⁸⁾ Degrees of freedom (df) = n-1 = 1

Table 6: Cross 6: Dihybrid between red female and yellow male

Step 3 Analysis

	1	1
RFP	R/-	R/-
RFP	R/-	R/-

Red : 1

	1	-
YFP	Y/-	Y/-
-	-/-	-/-

Yellow 1/2 Grev 1/2

Orange 1 *1/2* 9 = 4.5 Red 1*1/2*9=4.5

Chi Square Table for this clutch:

	CIII 5qt	iare rable for t	ilis ciutcii.		1
(1)	(2)	(3)	(4)	(5)	(6)
Phenotype	Observed	Expected	d = (o - e)	d^2	d^2/e
	Number, o	Number, e			
Red	5	5	0	0	0
Orange	4	5	1	0.20	0.04
Total	9	10			0.04

⁽⁷⁾ X^2 = the sum of all of the numbers in column 6 = 0.04

Conclusion:

(9) P-value and conclusion about your hypothesis: 0.8 < P < 0.9

⁽⁸⁾ Degrees of freedom (df) = n-1 = 1

Table 7: Cross 7: Dihybrid between a purple female and purple male

Step 3 analysis

	PFP	-
PFP	P/P	P/-
-	P/-	-/-

Purple: 3/4 Grey: 1/4

	gol	+
gol	gol/gol	gol/+
+	gol/+	+/+

No pigment: 3/4 Pigment: 1/4

Purple, pigment 3/4* 3/4 * 13 = 7.3125Purple, no pigment 3/4*1/4 * 13 = 2.4375Grey, pigment 1/4* 3/4 * 13 = 2.4375Grey, no pigment 1/4*1/4 * 13 = 0.8125

Chi Square Table for this clutch:

		iaic Table for t			1
(1)	(2)	(3)	(4)	(5)	(6)
Phenotype	Observed	Expected	d = (o - e)	d^2	d^2/e
	Number, o	Number, e	,		
Dumala miamant	ŕ	7	2	1	0.57
Purple, pigment	9	/	2	4	0.57
Grey, pigment	2	1	1	1	1.00
331 8					
Purple, no pigment	1	2	-1	1	0.50
ruipie, no pigment	1	2	-1	1	0.50
Grey, no pigment	1	2	-1	1	0.50
Total	13	12			2.57
2300					,

⁽⁷⁾ X^2 = the sum of all of the numbers in column 6 = 2.57

Conclusion:

(9) P-value and conclusion about your hypothesis: 0.4 < P < 0.5

⁽⁸⁾ Degrees of freedom (df) = n-1 = 3

Table 8: Cross 8: Trihybrid between red male and purple male

	Red	-
Red	R/R	R/-
-	R/-	-/-

Red: 3/4 Not red: 1/4

	1	-
PFP	P/-	P/-
-	-/-	-/-

Purple: 2/4 Not purple: 2/4

	gol	+
gol	gol/gol	gol/+
+	gol/+	+/+

Pigment: 3/4 No pigment: 1/4

Red purple, pigment 3/4 * 2/4 * 3/4 * 17 = 4.78Red purple, no pigment 3/4 * 2/4 * 1/4 * 17 = 1.59Red not purple, pigment 3/4 * 2/4 * 3/4 * 17 = 4.78Red not purple, no pigment 3/4 * 2/4 * 1/4 * 17 = 1.59

Not red, purple, pigment 1/4 * 2/4 * 3/4 * 17 = 1.59Not red, purple, no pigment 1/4 * 2/4 * 1/4 * 17 = 0.53Not red, not purple, pigment 1/4 * 2/4 * 3/4 * 17 = 1.59Not red, not purple, no pigment 1/4 * 2/4 * 1/4 * 17 = 0.53

Chi Square Table for this clutch:

on square rable for the	5 Clutch.				
(1)	(2)	(3)	(4)	(5) d ²	(6)
Phenotype	Observed	Expected	d = (o - e)	d^2	d^2/e
	Number, o	Number, e			
Purple, pigment	2	2	0	0	0
Grey, pigment	1	2	-1	1	0.50
Red, pigment	5	5	0	0	0
Red purple, pigment	3	5	2	4	0.80
Grey, no pigment	2	1	1	1	1.00
Red, no pigment	2	2	0	0	0
Red purple, no	2	2	0	0	0
pigment					
Purple, no pigment	0	1	-1	1	1.00
Total	17				3.30

⁽⁷⁾ X^2 = the sum of all of the numbers in column 6 = 3.30

- (8) Degrees of freedom (df) = n-1 = 7
- (9) P-value and conclusion about your hypothesis: 0.8 < P < 0.9

Table 9: Cross 9: Dihybrid between WT female and orange male

Step 3 Analysis

	-	-
RFP	R/-	R/-
-	-/-	-/-

Red: 1/2 Not Red: 1/2

	-	-
YFP	Y/-	Y/-
-	-/-	-/-

Yellow 1/2 Not yellow 1/2

Chi Square Table for this clutch:

(1)	(2)	(3)	(4)	(5)	(6)
Phenotype	Observed	Expected	d = (o - e)	d^2	d^2/e
	Number, o	Number, e	,		
Grey	1	4	-3	9	2.25
Yellow	5	4	1	1	0.25
Red	5	4	1	1	0.25
Orange	3	4	-1	1	0.25
Total	14	14			3.00

- (7) X^2 = the sum of all of the numbers in column 6 = 3.00
- (8) Degrees of freedom (df) = n-1 = 3

Conclusion:

(9) P-value and conclusion about your hypothesis: 0.3 < P < 0.4

Table 10: Cross 10: Tetrahybrid between short finned, purple male and long finned, yellow female

	-	-
PFP	P/-	P/-
_	-/-	-/-

Purple: 1/2 Not purple: 1/2

	1	1
YFP	YFP/-	YFP/-
YFP	YFP/-	YFP/-

Yellow 1

	Long	Short
Short	S/L	S/S
Short	S/L	S/S

Long 1/2 Short 1/2

	Stripe	Spot
Spot	Sp/St	Sp/Sp
Spot	Sp/St	Sp/Sp

Stripe 1/2 Spot 1/2

Purple yellow, long fin, stripe 1/2 * 1 * 1/2 * 1/2 * 4 = 0.5Purple vellow, long fin, spot 1/2 * 1 * 1/2 * 1/2 * 4 = 0.5Purple yellow, short fin, stripe 1/2 * 1 * 1/2 * 1/2 * 4 = 0.5Purple yellow, short fin, spot 1/2 * 1 * 1/2 * 1/2 * 4 = 0.51/2 * 1 * 1/2 * 1/2 * 4 = 0.5Yellow, long fin, stripe Yellow, long fin, spot 1/2 * 1 * 1/2 * 1/2 * 4 = 0.5Yellow, short fin, stripe 1/2 * 1 * 1/2 * 1/2 * 4 = 0.5Yellow, short fin, spot 1/2 * 1 * 1/2 * 1/2 * 4 = 0.5

(1)	(2)	(3)	(4)	(5)	(6)
Phenotype	Observed	Expected	d = (o - e)	d^2	d ² /e
	Number, o	Number, e			
Purple yellow, long fin,	0	1	1	1	1
stripe					
Purple yellow, long fin,	1	1	0	0	0
spot					
Purple yellow, short	0	1	-1	1	1
fin, stripe					
Purple yellow, short	0	1	-1	1	1
fin, spot					
Yellow, long fin, stripe	0	1	-1	1	1
Yellow, long fin, spot	0	1	-1	1	1
Yellow, short fin, stripe	2	1	1	1	1
Yellow, short fin, spot	1	1	0	0	0
Total	4				6

⁽⁷⁾ X^2 = the sum of all of the numbers in column 6 = 6

⁽⁸⁾ Degrees of freedom (df) = n-1 = 7

⁽⁹⁾ P-value and conclusion about your hypothesis: 0.5 < P < 0.6

Table 11: Cross 11: Dihybrid between orange male and orange female

	RFP	-
RFP	R/R	R/-
-	R/-	-/-

Red : 3/4 Not red : 1/4

	YFP	-
YFP	Y/Y	Y/-
-	Y/-	-/-

Yellow 3/4 Not yellow 1/4

Red/ Yellow : 3/4 * 3/4 * 19 = 10.688 Red/ not yellow : 3/4 * 1/4 * 19 = 3.5625 Not red/ yellow : 1/4 * 3/4 * 19 = 3.5625 Not red/ not yellow : 1/4 * 1/4 * 19 = 1.1875

Chi Square Table for this clutch:

(1)	(2)	(3)	(4)	(5)	(6)
Phenotype	Observed	Expected	d = (o - e)	d^2	d^2/e
	Number, o	Number, e			
Orange	6	11	-5	25	2.27
Yellow	5	4	1	1	0.25
Grey	4	1	3	9	9.00
Red	4	4	0	0	0
Total	19				11.52

- (7) X^2 = the sum of all of the numbers in column 6 = 11.52
- (8) Degrees of freedom (df) = n-1 = 3

Conclusion:

(9) P-value and conclusion about your hypothesis: P < 0.01

Table 12: Cross 12: Trihybrid between purple male and purple female

	RFP	-
RFP	RFP/RFP	RFP/-
-	RFP/-	-/-

Red: 3/4 Not Red: 1/4

	BFP	1
BFP	BFP/BFP	BFP/-
-	BFP/-	-/-

Blue: 3/4 Not blue: 1/4

	gol	+
gol	gol/gol	gol/+
+	gol/+	gol/+

Pigment: 3/4 No pigment: 1/4

Red blue, no pigment3/4*3/4*1/4*15 = 2.109Red blue, pigment3/4*3/4*3/4*15 = 6.328Red not blue, no pigment3/4*1/4*1/4*15 = 0.703Red not blue, pigment3/4*1/4*3/4*15 = 2.109

Not red blue, no pigment Not red blue, pigment Not red not blue, no pigment Not red not blue, pigment 1/4*3/4*1/4*15= 0.703 1/4*3/4*3/4*15= 2.109 1/4*1/4*1/4*15= 0.0156 1/4*1/4*3/4*15= 0.703

Chi Square Table for this clutch:

(1)	(2)	(3)	(4)	(5)	(6)
Phenotype	Observed	Expected	d = (o - e)	d^2	d^2/e
	Number, o	Number, e			
Purple, pigment	4	6	-2	4	0.66
Grey, pigment	1	1	0	0	0
Blue, pigment	3	2	1	1	0.50
Red, pigment	6	2	4	16	8
Purple, no pigment	1	2	-1	1	0.50
Grey, no pigment	0	0	0	0	0
Blue, no pigment	0	1	-1	1	1
Red, no pigment	0	1	-1	1	1
Total	15				11.66

⁽⁷⁾ X^2 = the sum of all of the numbers in column 6 = 11.66

⁽⁸⁾ Degrees of freedom (df) = n-1=7

⁽⁹⁾ P-value and conclusion about your hypothesis: 0.1 < P < 0.15

Table 13: Cross 13: Trihybrid between red male and yellow female

	-	-
RFP	RFP/-	RFP/-
RFP	RFP/-	RFP/-
		•

Red:1

	•	-
YFP	YFP/-	YFP/-
YFP	YFP/-	YFP/-

Yellow:

	gol	gol
+	gol/+	gol/+
+	gol/+	gol/+

Pigment: 1

Orange, pigment 1* 1* 1* 6 = 6

Chi Square Table for this clutch:

(1)	(2)	(3)	(4)	(5)	(6)
Phenotype	Observed	Expected	d = (o - e)	d^2	d ² /e
	Number, o	Number, e			
Orange, striped	6	6			
Total	6	6			

- (7) X^2 = the sum of all of the numbers in column 6 =
- (8) Degrees of freedom (df) = n-1 = 0

Conclusion:

(9) P-value and conclusion about your hypothesis:

Cannot carry out Chi square analysis with 0 degrees of freedom

Table 14: Cross 14: Trihybrid between Green, no pigment male and purple, striped male

	-	-
GFP	GFP/-	GFP/-
-	-/-	-/-

Green: 1/2 Not green: 1/2

	PFP	_
-	PFP/-	-/-
-	PFP/-	-/-

Purple: 1/2 Not purple: 1/2

	gol	gol
+	gol/+	gol/+
+	gol/+	gol/+

Pigment: 1

Green-purple $\frac{1}{2} * \frac{1}{2} * 1 * 12 = 3$ Green, not purple $\frac{1}{2} * \frac{1}{2} * 1 * 12 = 3$ Purple, not green $\frac{1}{2} * \frac{1}{2} * 1 * 12 = 3$ Note green, not purple $\frac{1}{2} * \frac{1}{2} * 1 * 12 = 3$

Chi Square Table for this clutch:

(1)	(2)	(3)	(4)	(5)	(6)
Phenotype	Observed	Expected	d = (o - e)	d^2	d^2/e
	Number, o	Number, e			
Green-purple	5	3	2	4	1.33
Green	4	3	1	1	0.33
Purple	2	3	-1	1	0.33
Grey	1	3	-2	4	1.33
Total					3.32

⁽⁷⁾ X^2 = the sum of all of the numbers in column 6 = 3.32

Conclusion:

(9) P-value and conclusion about your hypothesis: 0.3 < P < 0.4

⁽⁸⁾ Degrees of freedom (df) = n-1 = 3

Table 15: Cross 15: Monohybrid between WT female and red male

	-	-
RFP	R/-	R/-
-	-/-	-/-

Red: 1/2 *12 = 6Not Red: 1/2 *12 = 6

Chi Square Table for this clutch:

Chi Square Tuble for this crutch.					
(1)	(2)	(3)	(4)	(5)	(6)
Phenotype	Observed	Expected	d = (o - e)	d^2	d^2/e
	Number, o	Number, e			
Red	4	6	-2	4	0.66
Grey	8	6	2	4	0.66
Total	12	12			1.32

⁽⁷⁾ X^2 = the sum of all of the numbers in column 6 = 1.32

Conclusion:

(9) P-value and conclusion about your hypothesis: 0.2 < P < 0.3

⁽⁸⁾ Degrees of freedom (df) = n-1 = 1

_	Chi squared Degrees of freedom (df)																								
												_	_							-					-
25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2		p value
	10.86		9.54	8.90	8.26	7.63	7.01	6.41	5.81	5.23	4.66	4.11	3.57	3.05	2.56	2.09	1.65	1.24	0.87	0.55	0.30	0.11	0.02	0.00	.99
16.47	15.66	14.85	14.04	13.24	12.44	11.65	10.86	10.09	9.31	8.55	7.79	7.04	6.30	5.58	4.87	4.17	3.49	2.83	2.20	1.61	1.06	0.58	0.21	0.02	.90
18.94	18.06	17.19	16.31	15.44	14.58	13.72	12.86	12.00	11.15	10.31	9.47	8.63	7.81	6.99	6.18	5.38	4.59	3.82	3.07	2.34	1.65	1.01	0.45	0.06	.80
20.87	19.94	19.02	18.10	17.18	16.27	15.35	14.44	13.53	12.62	11.72	10.82	9.93	9.03	8.15	7.27	6.39	5.53	4.67	3.83	3.00	2.19	1.42	0.71	0.15	.70
22.62	21.65	20.69	19.73	18.77	17.81	16.85	15.89	14.94	13.98	13.03	12.08	11.13	10.18	9.24	8.30	7.36	6.42	5.49	4.57	3.66	2.75	1.87	1.02	0.27	.60
24.34	23.34	22.34	21.34	20.34	19.34	18.34	17.34	16.34	15.34	14.34	13.34	12.34	11.34	10.34	9.34	8.34	7.34	6.35	5.35	4.35	3.36	2.37	1.39	0.45	.50
26.14	25.11	24.07	23.03	21.99	20.95	19.91	18.87	17.82	16.78	15.73	14.69	13.64	12.58	11.53	10.47	9.41	8.35	7.28	6.21	5.13	4.04	2.95	1.83	0.71	.40
28.17	27.10	26.02	24.94	23.86	22.77	21.69	20.60	19.51	18.42	17.32	16.22	15.12	14.01	12.90	11.78	10.66	9.52	8.38	7.23	6.06	4.88	3.66	2.41	1.07	.30
30.68	29.55	28.43	27.30	26.17	25.04	23.90	22.76	21.61	20.47	19.31	18.15	16.98	15.81	14.63	13.44	12.24	11.03	9.80	8.56	7.29	5.99	4.64	3.22	1.64	.20
32.28	31.13	29.98	28.82	27.66	26.50	25,33	24.16	22.98	21.79	20.60	19.41	18.20	16.99	15.77	14.53	13.29	12.03	10.75	9.45	8.12	6.74	5.32	3.79	2.07	.15
34.38	33.20	32.01	30.81	29.62	28.41	27.20	25.99	24.77	23.54	22.31	21.06	19.81	18.55	17.28	15.99	14.68	13.36	12.02	10.64	9.24	7.78	6.25	4.61	2.71	.10
34.90	33.71	32.51	31.31	30.10	28.89	27.67	26.45	25.21	23.98	22.73	21.48	20.21	18.94	17.65	16.35	15.03	13.70	12.34	10.95	9.52	8.04	6.49	4.82	2.87	.09
35.47	34.27	33.06	31.85	30.63	29.41	28.18	26.95	25.71	24.46	23.20	21.93	20.66	19.37	18.07	16.75	15.42	14.07	12.69	11.28	9.84	8.34	6.76	5.05	3.06	.08
36.11	34.89	33.68	32.45	31.22	29.99	28.75	27.50	26.25	24.99	23.72	22.44	21.15	19.85	18.53	17.20	15.85	14.48	13.09	11.66	10.19	8.67	7.06	5.32	3.28	.07
36.82		34.37																13.54			9.04	7.41	5.63	3.54	.06
						20110												14.07			9.49	7.81	5.99	3.84	.05
																		14.70					6.44	4.22	.04
39.88																		15.51				8.95	7.01	4.71	.03
																		16.62				9.84	7.82	5.41	.02
44.31		41.64																18.48	1.0100				9.21	6.63	.01
			10.20																						10.1
	_	ms wit				_	_	_	_	37.70	30.12	34.53	32.91	31.26	20.53	27.00	20.12	24.32	22.46	20.51	10.47	10.27	13.82	10.03	.001

From: http://www.algebra.com/algebra/homework/Probability-and-statistics/